当前位置:首页 > 产品中心 > taptap.app >
产品分类
Product CategoryThe p21 activated kinases (PAK) are critical effectors that link Rho GTPases to cytoskeleton reorganization and nuclear signaling. The PAK proteins are a family of serine/threonine kinases that serve as targets for the small GTP binding proteins, CDC42 and RAC1, and have been implicated in a wide range of biological activities. The protein encoded by this gene is activated by proteolytic cleavage during caspase-mediated apoptosis, and may play a role in regulating the apoptotic events in th
This gene encodes a tumor suppressor protein containing transcriptional activation, DNA binding, and oligomerization domains. The encoded protein responds to diverse cellular stresses to regulate expression of target genes, thereby inducing cell cycle arrest, apoptosis, senescence, DNA repair, or changes in metabolism. Mutations in this gene are associated with a variety of human cancers, including hereditary cancers such as Li-Fraumeni syndrome. Alternative splicing of this gene and the use
Non-receptor protein-tyrosine kinase implicated in signaling pathways involved in cell motility, proliferation and apoptosis. Activated by tyrosine-phosphorylation in response to either integrin clustering induced by cell adhesion or antibody cross-linking, or via G-protein coupled receptor (GPCR) occupancy by ligands such as bombesin or lysophosphatidic acid, or via LDL receptor occupancy. Plays a potential role in oncogenic transformations resulting in increased kinase activity. [SUBCELLULAR
CD135 is a tyrosine kinase receptor expressed on normal cells including CD34+ hematopoietic stem cells, myelomonocytic progenitors, primitive B cell progenitors, and thymocytes. CD135 is also expressed on malignant hematopoietic cells including AML, ALL and CML BC. CD135, also known as FMS-like tyrosine kinase 3, FLT3, STK1, and Flk2, is a growth factor receptor that binds the FLT3 ligand to promote the growth and differentiation of primitive hematopoietic cells. The intracytoplasmic domain
Fibroblast growth factors (FGFs) produce mitogenic and angiogenic effects in target cells by signaling through the cellular surface tyrosine kinase receptors. There are four members of the FGF receptor family: FGFR-1 (flg), FGFR-2 (bek, KGFR), FGFR-3 and FGFR-4. Each receptor contains an extracellular ligand binding domain, a transmembrane region and a cytoplasmic kinase domain (1). Following ligand binding and dimerization, the receptors are phosphorylated at specific tyrosine residues (2)
HRASLS3 specifically catalyzes the release of fatty acids from phospholipids in adipose tissue and also has a weak lysophospholipase activity. It is a tumor suppressor that may be involved in interferon-dependent cell death.